Semiconductor nanocrystals for biological imaging.
نویسندگان
چکیده
Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission spectra. Semiconductor nanocrystals, however, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in the generation of bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.
منابع مشابه
Hydrothermal synthesis of zinc oxide nanostructures
Semiconductors with dimensions in the nanometer realm are important because their electrical, optical and chemical properties can be tuned by changing the size of the particles. These nanostructures have attracted much interest due to their fundamental importance in bridging the gap between bulk matter and molecular species [199, 200]. Optical properties of nanoparticles are of great interest f...
متن کاملIn vivo imaging of quantum dots encapsulated in phospholipid micelles.
Fluorescent semiconductor nanocrystals (quantum dots) have the potential to revolutionize biological imaging, but their use has been limited by difficulties in obtaining nanocrystals that are biocompatible. To address this problem, we encapsulated individual nanocrystals in phospholipid block-copolymer micelles and demonstrated both in vitro and in vivo imaging. When conjugated to DNA, the nano...
متن کاملSemiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging
Over the years, biological imaging has seen many advances, allowing scientists to unfold many of the mysteries surrounding biological processes. The ideal imaging resolution would be in nanometres, as most biological processes occur at this scale. Nanotechnology has made this possible with functionalised nanoparticles that can bind to specific targets and trace processes at the cellular and mol...
متن کاملInfluences of Co2+ & Er3+ Co-doping on the Structural and Physical Properties of ZnO Nanocrystals Synthesized by Hydrothermal Route
Co2+ & Er3+ co-doped ZnO nanocrystals were synthesized by the hydrothermal method at 180°C and pH= 12 for 48 h. Powder XRD patterns indicate that the Zn1-2xErxCoxO crystals (0.00<x≤0.035) are isostructural with ZnO. The cell parameters increase for Er3+ and Co2+ upon increasing the dopant content (x). SEM images show that doping of Er3+ and Co2+ into the sites of Zn2+ does not change the morpho...
متن کاملCarboxylic Acid enriched nanospheres of semiconductor nanorods for cell imaging.
During the past decades, nanomaterials such as noblemetal, lanthanide-doped, magnetic, luminescent SiO2, [9,10] and semiconductor nanomaterials have been extensively investigated and used in the development of sensitive and selective detection and imaging in biological and medical fields. Owing to their novel optical properties, semiconductor nanocrystals are of great interest to many fields su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current opinion in neurobiology
دوره 15 5 شماره
صفحات -
تاریخ انتشار 2005